Here are our fundamental rules for taking derivatives. With them, we can calculate the derivative of any function that's built out of functions whose derivatives we already know.

Rule	Input Function	Derivative
Sum	f(x) + g(x)	f'(x) + g'(x)
Product	f(x)g(x)	f'(x)g(x) + f(x)g'(x)
Quotient	$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
Chain	f(g(x))	f'(g(x))g'(x)

There are two kinds of functions we currently know how to differentiate: polynomials, and the exponential function:

Rule	Input Function	Derivative
Power	x^n	nx^{n-1}
Exponential	$e^x, \exp(x)$	$e^x, \exp(x)$

Remember that the second "rule" is actually part of the definition of the exponential function.

We can combine these rules to differentiate even a complicated product:

$$h(x) = (e^x + x^3 - 3x + 1)(e^{3x^2} - x)$$

First, we notice that the function is built out of a product:

$$h(x) = \underbrace{(e^x + x^3 - 3x + 1)}_{f(x)} \underbrace{(e^{3x^2} - x)}_{g(x)}$$

Therefore, h'(x) = f'(x)g(x) + f(x)g'(x) by the **product rule**. This reduces us to computing two (hopefully simpler) derivatives: those of f(x) and g(x).

First, $f(x) = e^x + x^3 - 3x + 1$ is a sum of several terms, but the **sum rule** tells us we can differentiate them all separately and add them together. Each individual component is straightforward to handle:

The derivative of e^x is e^x by the **exponential rule**.

The derivative of x^3 is $3x^2$ by the **power rule**.

The derivative of -3x is -3 by the **power rule**.

The derivative of 1 is 0 (it's constant).

Adding these all up according to the sum rule, we get

$$f'(x) = e^x + 3x^2 - 3$$

Next up is g(x). We can again use the **sum rule** so that we only have to differentiate e^{3x} and -x separately. The **power rule** tells us right away that the derivative of the second of those is -1.

The derivative of $2e^{3x^2}$ is trickier. Here we will use the **chain rule** to work out the derivative of e^{3x^2} , which is the **composition** of e^x and $3x^2$. If we call those functions a(x) and b(x), respectively, then we seek the derivative of a(b(x)), which by **chain rule** should be a'(b(x))b'(x). The derivative of $a(x) = e^x$ is e^x by the **exponential rule** while the derivative of $b(x) = 3x^2$ is 6x by the **power rule**. Combining those with the **chain rule**, we obtain

$$a'(b(x))b'(x) = e^{3x^2}6x = 6xe^{3x^2}$$

Combining these two with **sum rule**, we get

$$g'(x) = 6xe^{3x^2} - 1$$

To recap, we have worked out:

$$f'(x) = e^x + 3x^2 - 3$$
 and $g'(x) = 6xe^{3x^2} - 1$

while the quantity we really want is

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

All we have to do is substitute in the quantities f(x), f'(x), g(x), g'(x), which we all know by now!!

$$h'(x) = (e^x + 3x^2 - 3)(e^{3x^2} - x) + (e^x + x^3 - 3x + 1)(6xe^{3x^2} - 1)$$